Application of the Preliminary Displacement Principle to the Temper Rolling Model
- 대한기계학회
- Journal of Mechanical Science and Technology
- Vol.15 No.2
-
2001.01225 - 231 (7 pages)
- 0
A mathematical model for the analysis of roll gap phenomena in the strip temper rolling process is described. A new approach to solve the roll indentation and diverging problem in modeling of severe temper rolling cases is obtained by adopting the preliminary displacement principle of two contacted rough bodies to describe the friction behavior in the roll gap. The mechanical peculiarities of the temper rolling process, such as a high friction value with high roughness rolls and a non-circular contact arc, low reduction and non-negligible entry and exit elastic zones as well as central preliminary displacement zone etc., are all taken into account. The deformation of work rolls is calculated with the influence function method and an arbitrary contact are shape is permitted. The strip deformation is modeled by the slab method and the entry and exit elastic deformation zones are included. The preliminary displacement principle is used to determine the boundaries and to calculate the friction of the central preliminary displacement zone. The model is calibrated against the production mill data and installed in the setup computer of a temper rolling mill in POSCO. The validity and precision of the model have been proven through a comparison of the measured roll forces and the predicted ones.
(0)
(0)