중복근을 갖는 비비례 감쇠시스템의 고유치 해석
Solution of Eigenvalue Problems for Nonclassically Damped Systems with Multiple Frequencies
- 한국전산구조공학회
- Computational Structural Engineering
- Vol.11 No.1
-
1998.01205 - 216 (12 pages)
- 0
본 논문에서는 중복근을 갖는 비비례 감쇠시스템의 고유치 해석 방법을 제안하였다. 2차 고유치 문제의 행렬 조합을 통한 선형 방정식에 수정된 Newton-Raphson기법과 고유벡터의 직교성을 적용하여 제안방법의 알고리즘을 유도하였다. 벡터 반복법 또는 부분공간 반복법과 같은 기존의 반복법에서는 수렴성을 향상시키기 위해 변위법을 적용하였으며, 이 값이 시스템의 고유치에 근사하게 되면 행렬분해 과정에서 특이성이 발생한다. 그러나 제안방법은 구하고자 하는 고유치가 중복근이 아닐 경우에, 변위값이 시스템의 고유치 일지라도 항상 정칙성을 유지하며, 이것을 해석적으로 증명하였다. 제안방법은 수정된 Newton-Raphson기법을 이용하기 때문에 초기값을 필요로 한다. 제안방법의 초기값으로는 반복법의 중간결과나 근사법의 결과를 사용할 수 있다. 이들 방법중 Lanczon방법이 가장 효율적으로 좋은 초기값을 제공하기 때문에 Lanczon방법의 결과를 제안방법의 초기값으로 사용하였다. 제안방법의 효율성을 증명하기 위하여 두가지 예제 구조물에 대해 해석시간 및 수렴성을 가장 많이 사용하고 있는 부분공간 반복법과 Lanczon방법의 결과와 비교하였다.
A solution method is presented to solve the eigenvalue problem arising in the dynamic analysis of nonclassicary damped structural systems with multiple eigenvalues. The proposed method is obtained by applying the modified Newton-Raphson technique and the orthonormal condition of the eigenvectors to the linear eigenproblem through matrix augmentation of the quadratic eigenvalue problem. In the iteration methods such as the inverse iteration method and the subspace iteration method, singularity may be occurred during the factorizing process when the shift value is close to an eigenvalue of the system. However, even though the shift value is an eigenvalue of the system, the proposed method provides nonsingularity, and that is analytically proved. Since the modified Newton-Raphson technique is adopted to the proposed method, initial values are need. Because the Lanczos method effectively produces better initial values than other methods, the results of the Lanczos method are taken as the initial values of the proposed method. Two numerical examples are presented to demonstrate the effectiveness of the proposed method and the results are compared with those of the well-known subspace iteration method and the Lanczos method.
(0)
(0)