상세검색
최근 검색어 전체 삭제
다국어입력
즐겨찾기0
국가지식-학술정보

깊은 신경망을 이용한 구조물의 유한요소모델 업데이팅

Finite Element Model Updating of Structures Using Deep Neural Network

  • 0
커버이미지 없음

유한요소모델 업데이팅은 계측에 의한 구조물의 실제 응답과 가장 가까운 응답을 내는 유한요소모델의 매개변수를 찾는 문제로 정의할 수 있다. 기존 연구에서는 실 구조물과 해석 모델의 응답의 오차를 최소화하는 최적화에 기반 한 방법이 개발되었다. 이 연구에서는 목표 모드 정보로부터 유한요소 모델의 매개변수를 직접 얻을 수 있는 역 고유치 문제를 구성하고 역 고유치 문제를 빠르고 정확하게 풀기 위한 깊은 신경망(Deep Neural Network)을 구성하는 방법을 제안한다. 개발한 방법의 적용 예로서 현수교의 역 고유치 함수를 모사하는 신경망을 이용한 동적 유한요소모델 업데이트를 보인다. 해석 결과 제시한 방법은 매우 높은 정확도로 목표 모드에 대응하는 매개변수를 찾아낼 수 있음을 보였다.

The finite element model updating can be defined as the problem of finding the parameters of the finite element model which gives the closest response to the actual response of the structure by measurement. In the previous researches, optimization based methods have been developed to minimize the error of the response of the actual structure and the analytical model. In this study, we propose an inverse eigenvalue problem that can directly obtain the parameters of the finite element model from the target mode information. Deep Neural Networks are constructed to solve the inverse eigenvalue problem quickly and accurately. As an application example of the developed method, the dynamic finite element model update of a suspension bridge is presented in which the deep neural network simulating the inverse eigenvalue function is utilized. The analysis results show that the proposed method can find the finite element model parameters corresponding to the target modes with very high accuracy.

(0)

(0)

로딩중