상세검색
최근 검색어 전체 삭제
다국어입력
즐겨찾기0
국가지식-학술정보

이미지 기반 기계 학습과 BIM을 활용한 자동화된 시공 진도 관리 - 합성곱 신경망 모델(CNN)과 실내측위기술, 4D BIM을 기반으로 -

Automated Construction Progress Management Using Computer Vision-based CNN Model and BIM

  • 0
커버이미지 없음

시공 현장 일단위의 진도 관리는 프로젝트 전체의 일정 관리와 성공적인 건설 프로젝트 완료에 상당한 영향을 미친다. 그러나 현재의 현장 진도 관리는 작업 담당자에 의하여 수기로 작성되기 때문에 객관적 입장의 유지가 어렵고, 일과 후 추가업무로 작성되어 내용의 누락 등 오류가 발생하는 경우가 있다. 인적 오류로 인한 잘못된 기록 작성의 문제를 해결하기 위하여 기존 연구들은 객체 인식 기반 현황의 시각화 또는 자동 BIM 데이터 수정 기술을 개발하였다. 그러나 특정 장비의 사용 또는 고정된 위치에서 장비사용을 전제로 하는 방법적 한계로 인하여 건물 시공 현장 전체를 파악하는 데에는 제약이 있다. 이러한 한계를 극복하기 위하여 본 연구는 작업자가 휴대하는 스마트기기를 활용하여 촬영한 사진의 객체 인식 기술과 WIFI 기반의 실내 사용자의 측위 기술을 활용하여 추출된 정보를 BIM 데이터의 속성으로 반영하고 즉각적인 현황 파악과 향후 지속적 데이터 활용이 가능한 방법을 제안한다. 실제 시공 현장 관리에 적용 가능한 방법과 기술의 성능을 확인하였고, 기존 개발된 기술 대비 실용도가 높아 건설 현장 관리의 신속화와 정보 작성과 처리의 정밀화에 이바지할 것으로 기대된다.

A daily progress monitoring and further schedule management of a construction project have a significant impact on the construction manager's decision making in schedule change and controlling field operation. However, a current site monitoring method highly relies on the manually recorded daily-log book by the person in charge of the work. For this reason, it is difficult to take a detached view and sometimes human error such as omission of contents may occur. In order to resolve these problems, previous researches have developed automated site monitoring method with the object recognition-based visualization or BIM data creation. Despite of the research results along with the related technology development, there are limitations in application targeting the practical construction projects due to the constraints in the experimental methods that assume the fixed equipment at a specific location. To overcome these limitations, some smart devices carried by the field workers can be employed as a medium for data creation. Specifically, the extracted information from the site picture by object recognition technology of CNN model, and positional information by GIPS are applied to update 4D BIM data. A standard CNN model is developed and BIM data modification experiments are conducted with the collected data to validate the research suggestion. Based on the experimental results, it is confirmed that the methods and performance are applicable to the construction site management and further it is expected to contribute speedy and precise data creation with the application of automated progress monitoring methods.

(0)

(0)

로딩중