상세검색
최근 검색어 전체 삭제
다국어입력
즐겨찾기0
국가지식-학술정보

위성 영상을 위한 경량화된 CNN 기반의 보간 기술 연구

A Study on Lightweight CNN-based Interpolation Method for Satellite Images

  • 0
커버이미지 없음

위성 영상 촬영 후 지상국에 전송된 영상을 이용하여 최종 위성 영상을 획득하기 위해 많은 영상 전/후 처리 과정이 수반된다. 전/후처리 과정 중 레벨 1R 영상에서 레벨 1G 영상으로 변환 시 기하 보정은 필수적으로 요구된다. 기하 보정 알고리즘에서는 보간 기법을 필연적으로 사용하게 되며, 보간 기법의 정확도에 따라서 레벨 1G 영상의 품질이 결정된다. 또한, 레벨 프로세서에서 수행되는 보간 알고리즘의 고속화 역시 매우 중요하다. 본 논문에서는 레벨 1R에서 레벨 1G로 변환 시 기하 보정에 필요한 경량화된 심층 컨볼루션 신경망 기반 보간 기법에 대해 제안하였다. 제안한 기법은 위성 영상의 해상도를 2배 향상하며, 빠른 처리 속도를 위해 경량화된 심층 컨볼루션 신경망으로 딥러닝 네트워크를 구성하였다. 또한, panchromatic (PAN) 밴드 정보를 활용하여 multispectral (MS) 밴드의 영상 품질 개선이 가능한 피처 맵 융합 방법을 제안하였다. 제안된 보간 기술을 통해 획득한 영상은 기존의 딥러닝 기반 보간 기법에 비해 정량적인 peak signal-to-noise ratio (PSNR) 지표에서 PAN 영상은 약 0.4 dB, MS 영상은 약 4.9 dB 개선된 결과를 보여주었으며, PAN 영상 크기 기준 36,500×36,500 입력 영상의 해상도를 2배 향상된 영상 획득 시 기존 딥러닝 기반 보간 기법 대비 처리 속도가 약 1.6배 향상됨을 확인하였다.

In order to obtain satellite image products using the image transmitted to the ground station after capturing the satellite images, many image pre/post-processing steps are involved. During the pre/post-processing, when converting from level 1R images to level 1G images, geometric correction is essential. An interpolation method necessary for geometric correction is inevitably used, and the quality of the level 1G images is determined according to the accuracy of the interpolation method. Also, it is crucial to speed up the interpolation algorithm by the level processor. In this paper, we proposed a lightweight CNN-based interpolation method required for geometric correction when converting from level 1R to level 1G. The proposed method doubles the resolution of satellite images and constructs a deep learning network with a lightweight deep convolutional neural network for fast processing speed. In addition, a feature map fusion method capable of improving the image quality of multispectral (MS) bands using panchromatic (PAN) band information was proposed. The images obtained through the proposed interpolation method improved by about 0.4 dB for the PAN image and about 4.9 dB for the MS image in the quantitative peak signal-to-noise ratio (PSNR) index compared to the existing deep learning-based interpolation methods. In addition, it was confirmed that the time required to acquire an image that is twice the resolution of the 36,500×36,500 input image based on the PAN image size is improved by about 1.6 times compared to the existing deep learning-based interpolation method.

(0)

(0)

로딩중