상세검색
최근 검색어 전체 삭제
다국어입력
즐겨찾기0
국가지식-학술정보

ON 𝜙-EXACT SEQUENCES AND 𝜙-PROJECTIVE MODULES

ON 𝜙-EXACT SEQUENCES AND 𝜙-PROJECTIVE MODULES

  • 0
커버이미지 없음

Let R be a commutative ring with prime nilradical Nil(R) and M an R-module. Define the map &#x1D719; : R &#x2192; R<sub>Nil(R)</sub> by ${\phi}(r)=\frac{r}{1}$ for r &#x2208; R and &#x1D713; : M &#x2192; M<sub>Nil(R)</sub> by ${\psi}(x)=\frac{x}{1}$ for x &#x2208; M. Then &#x1D713;(M) is a &#x1D719;(R)-module. An R-module P is said to be &#x1D719;-projective if &#x1D713;(P) is projective as a &#x1D719;(R)-module. In this paper, &#x1D719;-exact sequences and &#x1D719;-projective R-modules are introduced and the rings over which all R-modules are &#x1D719;-projective are investigated.

(0)

(0)

로딩중