상세검색
최근 검색어 전체 삭제
다국어입력
즐겨찾기0
국가지식-학술정보

딥러닝의 패턴 인식능력을 활용한 주택가격 추정

How the Pattern Recognition Ability of Deep Learning Enhances Housing Price Estimation

  • 10
커버이미지 없음

주택가격을 정확히 추정하기 위한 많은 연구가 진행되어 왔다. 선행연구들은 주택의 고유 특성과 인근 지역 특성을 통제하는 계량경제모형을 활용한 분석이 많았다. 본 연구에서는 인공신경망 모형(ANN)을 활용하여 주택가격을 추정하였다. 딥러닝 기술의 장점은 변수 간의 복잡하고 비선형적인 특성을 모델링하고 데이터의 패턴을 인식할 수 있다는 것이다. 본 연구에서는 부동산 시장에서 공간적 분포도 패턴으로 인식할 수 있다는 가정하에 지리좌표를 설명변수로 ANN에 투입하였다. 선형회귀분석과 ANN 모형 간 비교 결과, 선형 모형 대비 ANN 모형의 설명력이 높았으며, 특히 ANN 모형은 지리좌표를 투입하였을 때 더 높은 정확도를 보여주었다. 또한 ANN 모형의 경우 지리좌표를 통해 모형 잔차의 공간적 자기 상관성이 크게 감소하였다는 점을 확인하였다. 이를 통해 ANN 모형의 패턴인식 능력을 활용하면 공간적 패턴을 학습시킴으로써 주택가격을 정확히 추정할 수 있음을 밝혔다.

Estimating the implicit value of housing assets is a very important task for participants in the housing market. Until now, such estimations were usually carried out using multiple regression analysis based on the inherent characteristics of the estate. However, in this paper, we examine the estimation capabilities of the Artificial Neural Network(ANN) and its 'Deep Learning' faculty. To make use of the strength of the neural network model, which allows the recognition of patterns in data by modeling non-linear and complex relationships between variables, this study utilizes geographic coordinates (i.e. longitudinal/latitudinal points) as the locational factor of housing prices. Specifically, we built a dataset including structural and spatiotemporal factors based on the hedonic price model and compared the estimation performance of the models with and without geographic coordinate variables. The results show that high estimation performance can be achieved in ANN by explaining the spatial effect on housing prices through the geographic location.

(0)

(0)

로딩중