ON <TEX>${mathcal{I}}$</TEX>-LACUNARY ARITHMETIC STATISTICAL CONVERGENCE
- 한국전산응용수학회
- Journal of applied mathematics & informatics
- Vol.40 No.1
-
2022.01327 - 339 (13 pages)
-
DOI : 10.14317/jami.2022.327
- 0
In this paper, we introduce arithmetic <TEX>${mathcal{I}}$</TEX>-statistically convergent sequence space <TEX>$A{mathcal{I}}SC$</TEX>, <TEX>${mathcal{I}}$</TEX>-lacunary arithmetic statistically convergent sequence space <TEX>$A{mathcal{I}}SC_{ heta}$</TEX>, strongly <TEX>${mathcal{I}}$</TEX>-lacunary arithmetic convergent sequence space <TEX>$AN_{ heta}[{mathcal{I}}]$</TEX> and prove some inclusion relations between these spaces. Futhermore, we give <TEX>${mathcal{I}}$</TEX>-lacunary arithmetic statistical continuity. Finally, we define <TEX>${mathcal{I}}$</TEX>-Cesàro arithmetic summability, strongly <TEX>${mathcal{I}}$</TEX>-Cesàro arithmetic summability. Also, we investigate the relationship between the concepts of strongly <TEX>${mathcal{I}}$</TEX>-Cesàro arithmetic summability, strongly <TEX>${mathcal{I}}$</TEX>-lacunary arithmetic summability and arithmetic <TEX>${mathcal{I}}$</TEX> -statistically convergence.
(0)
(0)