상세검색
최근 검색어 전체 삭제
다국어입력
즐겨찾기0
국가지식-학술정보

Robust Formation Control of Electrically Driven Nonholonomic Mobile Robots via Sliding Mode Technique

Robust Formation Control of Electrically Driven Nonholonomic Mobile Robots via Sliding Mode Technique

  • 0
커버이미지 없음

This paper proposes a sliding mode formation control method for electrically driven nonholonomic mobile robots in the presence of model uncertainties and disturbances. We use the kinematic model based on the leader-following approach for the formation control of multiple robots. Unlike many researches considering only the kinematic model, we also consider the dynamic model including actuator dynamics to obtain the voltage input because it is more realistic to use the voltage as input than the velocity. Then, the sliding mode control method is used to deal with model uncertainties and disturbances acting on the mobile robots. The stability of the proposed control system is proven using Lyapunov stability theory. Finally, we perform computer simulations to demonstrate the performance of the proposed control system.

This paper proposes a sliding mode formation control method for electrically driven nonholonomic mobile robots in the presence of model uncertainties and disturbances. We use the kinematic model based on the leader-following approach for the formation control of multiple robots. Unlike many researches considering only the kinematic model, we also consider the dynamic model including actuator dynamics to obtain the voltage input because it is more realistic to use the voltage as input than the velocity. Then, the sliding mode control method is used to deal with model uncertainties and disturbances acting on the mobile robots. The stability of the proposed control system is proven using Lyapunov stability theory. Finally, we perform computer simulations to demonstrate the performance of the proposed control system.

(0)

(0)

로딩중