상세검색
최근 검색어 전체 삭제
다국어입력
즐겨찾기0
국가지식-학술정보

Time-Varying Line-of-Sight Rate Estimator with a Single Modified Tracking Index for RF Homing Guidance

Time-Varying Line-of-Sight Rate Estimator with a Single Modified Tracking Index for RF Homing Guidance

  • 0
커버이미지 없음

A practical time-varying line-of-sight (LOS) rate estimator is proposed for surface-to-air missile (SAM) guidance using an RF seeker. The range-dependant LOS rate dynamics and variances of boresight error (BSE) measurements constitute the Kalman filtering problem associated with the time-varying matrix differential Riccati equation (DRE). Since the conventional gain-scheduled steady-state Kalman filter derived by solving an algebraic Riccati equation (ARE) cannot fully consider the time-varying nature of LOS rate dynamics, it might not be appropriate for volatile missile-target engage-ment scenarios. This motivates us to investigate a pseudo-analytic solution to the time-varying Kalman filtering problem based on the algebraic transform of the given DRE. Apart from the previous works, the explicit form of time-varying Kalman gain is expressed in terms of a single filter design parameter, called modified tracking index. The proposed time-varying filter is not only able to effectively handle the time-varying LOS rate dynamics but is also affordable for real-time implementation. Adjoint analysis results for a homing guidance loop show that the proposed LOS rate estimator could improve guidance performance and be an excellent choice for SAM applications.

A practical time-varying line-of-sight (LOS) rate estimator is proposed for surface-to-air missile (SAM) guidance using an RF seeker. The range-dependant LOS rate dynamics and variances of boresight error (BSE) measurements constitute the Kalman filtering problem associated with the time-varying matrix differential Riccati equation (DRE). Since the conventional gain-scheduled steady-state Kalman filter derived by solving an algebraic Riccati equation (ARE) cannot fully consider the time-varying nature of LOS rate dynamics, it might not be appropriate for volatile missile-target engage-ment scenarios. This motivates us to investigate a pseudo-analytic solution to the time-varying Kalman filtering problem based on the algebraic transform of the given DRE. Apart from the previous works, the explicit form of time-varying Kalman gain is expressed in terms of a single filter design parameter, called modified tracking index. The proposed time-varying filter is not only able to effectively handle the time-varying LOS rate dynamics but is also affordable for real-time implementation. Adjoint analysis results for a homing guidance loop show that the proposed LOS rate estimator could improve guidance performance and be an excellent choice for SAM applications.

(0)

(0)

로딩중