A three-dimensional (3D) porous polyaniline (PANI) film was fabricated by a combined photo-and soft-lithography technique based on a large-area nanopillar array, followed by a controlled chemical dilute polymerization. The as-obtained 3D PANI film consisted of hierarchically interconnected PANI nanofibers, resulting in a 3D hierarchical nanoweb film with a large surface and open porous structure. Using electrochemical measurements, the resulting 3D PANI film was demonstrated as a flexible pH sensor electrode, exhibiting a high sensitivity of 60.3 mV/pH, which is close to the ideal Nernstian behavior. In addition, the 3D PANI electrode showed a fast response time of 10 s, good repeatability, and good selectivity. When the 3D PANI electrode was measured under a mechanically bent state, the electrode exhibited a high sensitivity of 60.4 mV/pH, demonstrating flexible pH sensor performance.
A three-dimensional (3D) porous polyaniline (PANI) film was fabricated by a combined photo-and soft-lithography technique based on a large-area nanopillar array, followed by a controlled chemical dilute polymerization. The as-obtained 3D PANI film consisted of hierarchically interconnected PANI nanofibers, resulting in a 3D hierarchical nanoweb film with a large surface and open porous structure. Using electrochemical measurements, the resulting 3D PANI film was demonstrated as a flexible pH sensor electrode, exhibiting a high sensitivity of 60.3 mV/pH, which is close to the ideal Nernstian behavior. In addition, the 3D PANI electrode showed a fast response time of 10 s, good repeatability, and good selectivity. When the 3D PANI electrode was measured under a mechanically bent state, the electrode exhibited a high sensitivity of 60.4 mV/pH, demonstrating flexible pH sensor performance.
(0)
(0)