상세검색
최근 검색어 전체 삭제
다국어입력
즐겨찾기0
국가지식-학술정보

Eventual shadowing for chain transitive sets of $C^1$ generic dynamical systems

Eventual shadowing for chain transitive sets of $C^1$ generic dynamical systems

  • 0
커버이미지 없음

We show that given any chain transitive set of a $C^1$ generic diffeomorphism $f$, if a diffeomorphism $f$ has the eventual shadowing property on the locally maximal chain transitive set, then it is hyperbolic. Moreover, given any chain transitive set of a $C^1$ generic vector field $X$, if a vector field $X$ has the eventual shadowing property on the locally maximal chain transitive set, then the chain transitive set does not contain a singular point and it is hyperbolic. We apply our results to conservative systems (volume-preserving diffeomorphisms and divergence-free vector fields).

We show that given any chain transitive set of a $C^1$ generic diffeomorphism $f$, if a diffeomorphism $f$ has the eventual shadowing property on the locally maximal chain transitive set, then it is hyperbolic. Moreover, given any chain transitive set of a $C^1$ generic vector field $X$, if a vector field $X$ has the eventual shadowing property on the locally maximal chain transitive set, then the chain transitive set does not contain a singular point and it is hyperbolic. We apply our results to conservative systems (volume-preserving diffeomorphisms and divergence-free vector fields).

(0)

(0)

로딩중