DPA Calculation for the D-D Nuclear Fusion Reaction in the KSTAR PFC
DPA Calculation for the D-D Nuclear Fusion Reaction in the KSTAR PFC
- 한국물리학회
- Journal of the Korean Physical Society
- 60(11)
-
2012.061993 - 1993 (1 pages)
-
DOI : http://dx.doi.org/
- 0
The interactions of fusion reaction products such as 2.45-MeV and 14.06-MeV neutrons and 3.05-MeV protons with the KSTAR PFC (plasma facing component) are analyzed using Monte Carlo codes. The dpa (displacement per atom) values in the three-layered PFC of graphite, Cu, and SS316L are calculated, and the depth profile was analyzed for different-type secondary particles. The PHITS code was used for this study. The deposited energy was also calculated for analysis of the nuclear heating effect. The serious irradiation condition of the International Thermonuclear Experimental Reactor (ITER) parameter, a neutron flux of 3.5 × 1013 neutrons/cm2·sec, was applied. The dpa values during one year operation were estimated as 0.75 dpa for graphite, 4.57 dpa for Cu, and 2.69 dpa for SS316L.
The interactions of fusion reaction products such as 2.45-MeV and 14.06-MeV neutrons and 3.05-MeV protons with the KSTAR PFC (plasma facing component) are analyzed using Monte Carlo codes. The dpa (displacement per atom) values in the three-layered PFC of graphite, Cu, and SS316L are calculated, and the depth profile was analyzed for different-type secondary particles. The PHITS code was used for this study. The deposited energy was also calculated for analysis of the nuclear heating effect. The serious irradiation condition of the International Thermonuclear Experimental Reactor (ITER) parameter, a neutron flux of 3.5 × 1013 neutrons/cm2·sec, was applied. The dpa values during one year operation were estimated as 0.75 dpa for graphite, 4.57 dpa for Cu, and 2.69 dpa for SS316L.
(0)
(0)