검증데이터 기반의 차별화된 이상데이터 처리를 통한 데이터 불균형 해소 방법
Resolving data imbalance through differentiated anomaly data processing based on verification data
- 한국지능정보시스템학회
- Journal of Intelligence and Information Systems
- Vol.28No.4
-
2022.01179 - 190 (12 pages)
- 0
데이터 불균형은 한 분류의 데이터 수가 다른 분류에 비해 지나치게 크거나 작은 현상을 의미하며. 이로 인해 분류 알고리즘을 활용하는 기계학습에서 성능을 저하시키는 주요 요인으로 제기되고 있다. 데이터 불균형 문제 해결을 위해서 소수 분포 데이터를 증폭하는 다양한 오버 샘플링(Over Sampling) 방법들이 제안되고 있다. 이 가운데 SMOTE는 가장 대표적인 방법으로 소수 분포 데이터의 증폭 효과를 극대화하기 위해 데이터에 포함된 잡음을 제거(SMOTE-IPF)하거나, 경계선만을 강화(Borderline SMOTE) 시키는 다양한 방법들이 출현하였다. 이 논문은 소수분류 데이터를 증폭하는 전통적인 SMOTE 방법에서 이상데이터(Anomaly Data)에 대한 처리방법개선을 통해 궁극적으로 분류성능을 높이는 방법을 제안한다. 제안 방법은 실험을 통해 기존 방법에 비해 상대적으로 높은 분류성능을 일관성 있게 제시하였다.
Data imbalance refers to a phenomenon in which the number of data in one category is too large or too small compared to another category. Due to this, it has been raised as a major factor that deteriorates performance in machine learning that utilizes classification algorithms. In order to solve the data imbalance problem, various ovrsampling methods for amplifying prime number distribution data have been proposed. Among them, SMOTE is the most representative method. In order to maximize the amplification effect of minority distribution data, various methods have emerged that remove noise included in data (SMOTE-IPF) or enhance only border lines (Borderline SMOTE). This paper proposes a method to ultimately improve classification performance by improving the processing method for anomaly data in the traditional SMOTE method that amplifies minority classification data. The proposed method consistently presented relatively high classification performance compared to the existing methods through experiments.
(0)
(0)