상세검색
최근 검색어 전체 삭제
다국어입력
즐겨찾기0
국가지식-학술정보

지반 조건과 TBM 운영 파라미터를 고려한 디스크 커터 마모 예측

Prediction of Disk Cutter Wear Considering Ground Conditions and TBM Operation Parameters

  • 0
커버이미지 없음

TBM 공법은 발파 공법에 비해 굴착 중 소음과 진동 수준이 낮고, 안정성이 높은 터널 굴착 공법이며, 전세계적으로 터널 프로젝트에 TBM 공법을 적용하는 사례가 증가하는 추세이다. 디스크 커터는 TBM의 커터헤드에 장착되는 굴착 도구로 지속적으로 막장면 지반과 상호작용하며, 이때 필연적으로 마모가 발생한다. 본 연구에서는 지질 조건과 TBM 운영파라미터, 머신러닝 알고리즘들을 이용하여 디스크 커터 마모를 정량적으로 예측하였다. 디스크커터 마모 예측의 입력변수 중 UCS 데이터의 수가 다른 기계 데이터 및 마모 데이터에 비해 매우 부족하기 때문에, 먼저 TBM 기계 데이터를 이용하여 전체 구간에 대한 UCS 추정을 진행하고, 완성된 전체 데이터로 마모율 계수 예측을 수행하였다. 마모율 계수 예측 모델의 성능을 비교해 본 결과 XGBoost 모델의 성능이 가장 높게 나타났으며, 복잡한 예측 모델의 해석을 위해 SHapley Additive exPlanation (SHAP) 분석을 진행하였다.

Tunnel Boring Machine (TBM) method is a tunnel excavation method that produces lower levels of noise and vibration during excavation compared to drilling and blasting methods, and it offers higher stability. It is increasingly being applied to tunnel projects worldwide. The disc cutter is an excavation tool mounted on the cutterhead of a TBM, which constantly interacts with the ground at the tunnel face, inevitably leading to wear. In this study quantitatively predicted disc cutter wear using geological conditions, TBM operational parameters, and machine learning algorithms. Among the input variables for predicting disc cutter wear, the Uniaxial Compressive Strength (UCS) is considerably limited compared to machine and wear data, so the UCS estimation for the entire section was first conducted using TBM machine data, and then the prediction of the Coefficient of Wearing rate(CW) was performed with the completed data. Comparing the performance of CW prediction models, the XGBoost model showed the highest performance, and SHapley Additive exPlanation (SHAP) analysis was conducted to interpret the complex prediction model.

(0)

(0)

로딩중