상세검색
최근 검색어 전체 삭제
다국어입력
즐겨찾기0
국가지식-학술정보

COMPLEX SYMMETRY OF TOEPLITZ OPERATORS AND COMPOSITION OPERATORS

COMPLEX SYMMETRY OF TOEPLITZ OPERATORS AND COMPOSITION OPERATORS

  • 0
커버이미지 없음

Denote by H<sub>&#x03B3;</sub>(&#x1D53B;) the Hilbert space of holomorphic functions over the open unit disk &#x1D53B; with the reproducing kernel $K^{\gamma}_{\omega}(z)={\frac{1}{(1-{\bar{\omega}}z)^{\gamma}}}$, &#x03B3; > 0. Let $J_{\alpha}:J_{\alpha}f(z)={\overline{f({\overline{{\alpha}z})}}}$ for z &#x2208; &#x1D53B; and &#x1D6FC; &#x2208; &#x1D715;&#x1D53B;, and let W<sub>u,v</sub> be the weighted composition operator. In this paper, we prove that if b &#x2208; &#x211D; and $b{\neq}{\frac{k{\pi}}{2}}$, for any integer k, then (cos b+i sin bW<sub>u,v</sub>)J<sub>&#x1D6FC;</sub> is a conjugation if and only if $v(z)={\frac{c-z}{1-{\bar{c}}z}}$, u(z) = &#x00B1;k<sup>(&#x03B3;)</sup><sub>c</sub>(z), c &#x2208; &#x1D53B; and ${\bar{c}}\,=\,c{\alpha}$, where k<sup>(&#x03B3;)</sup><sub>c</sub>(z) is the normalized reproducing kernel, or (cos b + i sin bW<sub>u,v</sub>)J<sub>&#x1D6FC;</sub> = &#x03BB;J<sub>&#x1D6FC;</sub> for some &#x03BB; &#x2208; &#x2102; with &#x007C;&#x03BB;&#x007C; = 1. We then derive a necessary and sufficient condition for a Toeplitz operator to be complex symmetric with respect to the conjugation (cos b + i sin bW<sub>u,v</sub>)J<sub>&#x1D6FC;</sub> on H<sub>&#x03B3;</sub>(&#x1D53B;) with &#x03B3; &#x2265; 1. Similarly, we also conduct a similar study for composition operators on H<sub>&#x03B3;</sub>(&#x1D53B;) with &#x03B3; > 0.

(0)

(0)

로딩중