5-Hydroxytryptamine Inhibits Glutamatergic Synaptic Transmission in Rat Corticostriatal Brain Slice
5-Hydroxytryptamine Inhibits Glutamatergic Synaptic Transmission in Rat Corticostriatal Brain Slice
- 대한생리학회-대한약리학회
- The Korean Journal of Physiology & Pharmacology
- 제9권 제5호
-
2005.01255 - 262 (8 pages)
- 0
Striatum is involved in the control of movement and habitual memory. It receives glutamatergic input from wide area of the cerebral cortex as well as an extensive serotonergic (5-hydroxytryptamine, 5-HT) input from the raphe nuclei. In our study, the effects of 5-HT on synaptic transmission were studied in the rat corticostriatal brain slice using in vitro whole-cell recording technique. 5-HT inhibited the amplitude as well as frequency of spontaneous excitatory postsynaptic currents (sEPSC) significantly, and neither γ-aminobutyric acid(GABA)<SUB>A</SUB> receptor antagonist bicuculline (BIC), nor N-methyl-<SUB>D</SUB>-aspartate (NMDA) receptor antagonist, <SUB>DL</SUB>-2-amino-5-phosphonovaleric acid (AP-V) could block the effect of 5-HT. In the presence non-NMDA receptor antagonist, 2,3-dioxo-6-nitro-1,2,3,4-tetrahydrobenxo[f] quinoxaline-7-sulfonamide (NBQX), the inhibitory effect of 5-HT was blocked. We also figured out that 5-HT change the channel kinetics of the sEPSC. There was a significant increase in the rise time during the 5-HT application. Our results suggest that 5-HT has an effect on both pre- and postsynaptic site with decreasing neurotransmitter release probability of glutamate and decreasing the sensitivity to glutamate by increasing the rise time of non-NMDA receptor mediated synaptic transmission in the corticostriatal synapses.
(0)
(0)