상세검색
최근 검색어 전체 삭제
다국어입력
즐겨찾기0
커버이미지 없음
SCOPUS 학술저널

Role of Gap Junction in the Regulation of Renin Release and Intracellular Calcium in As 4.1 Cell Line

Role of Gap Junction in the Regulation of Renin Release and Intracellular Calcium in As 4.1 Cell Line

  • 8

Gap junction protein, connexin, is expressed in endothelial cells of vessels, glomerulus, and renin secreting cells of the kidney. The purpose of this study was to investigate the role of gap junction in renin secretion and its underlying mechanisms using As 4.1 cell line, a renin-expressing clonal cell line. Renin release was increased proportionately to incubation time. The specific gap junction inhibitor, 18-beta glycyrrhetinic acid (GA) increased renin release in dose-dependent and time- dependent manners. Heptanol and octanol, gap junction blockers, also increased renin release, which were less potent than GA. GA-stimulated renin release was attenuated by pretreatment of the cells with amiloride, nifedipine, ryanodine, and thapsigargin. GA dose-dependently increased intracellular Ca<SUP>2+</SUP> concentration, which was attenuated by nifedipine, nimodipine, ryanodine, and thapsigargin. However, RP-cAMP, chelerythrine, tyrphostin A23, or phenylarsine oxide did not induced any signi</SUP>ficant change in GA-stimulated increase of intracellular Ca2+ concentration. These results suggest that gap junction plays an important role on the regulation of renin release and intracellular Ca<SUP>2+</SUP> concentration in As 4.1 cells.

로딩중