수문기상자료의 빈도해석은 풍수해에 따른 대응 및 시설물의 설계기준에 있어 중요한 요소 중 하나이다. 일반적으로 수문기상자료에 대한 빈도해석의 경우 관측자료는 통계적으로 정상성을 가진다고 가정하고, 확률분포의 매개변수를 고려하는 매개변수적방법을 적용하고 있다. 이러한, 매개변수적 빈도해석을 위해서는 신뢰성 있는 충분한 자료의 수집이 필요하지만, 강수량과 다르게 적설량의 경우 계절적 특성과 함께 최근에는 기후변화로 인한 적설량 관측일수 및 평균 최심신적설량이 감소하기때문에 부족한 자료에 대한 문제점을 보완할 필요가 있다. 이에 본 연구에서는 매개변수 빈도해석 방법과 부족한 자료의 문제점을 보완할 수 있는 표본 재추출 기법인 Bootstrap방법과 SIR(Sampling Importance Resampling)알고리즘을 적용하여 적설량의 빈도해석을 실시하였다. 58개 기상관측소에 대해 재추출된 일 최대 최심신적설량 자료를 이용한 비매개변수적 빈도해석을 통해 확률적설량을 산정하고 이를 비교 분석하였다. 빈도별 확률적설량의 증감률을 검토한 결과 매개변수적 빈도해석과 비매개변수적 빈도해석에서 증감률을 나타내는 지점들이 대부분 일치하는 것으로 나타났다. 확률적설량은 관측자료와 Bootstrap방법에서 –19.2%∼3.9%, Bootstrap방법과 SIR알고리즘에서 –7.7%∼137.8% 정도의 차이를 보였다. 표본 재추출 기법은 관측표본이 적은 적설량의 빈도해석 및 불확실성 범위의 제시가 가능함을 확인할 수 있었고, 이는 여름철 태풍과 같이 계절적 특성을 지닌 다른 자연재난의 해석에도 적용될 수 있을 것으로 판단된다.
The frequency analysis of hydrometeorological data is one of the most important factors in response to natural disaster damage, and design standards for a disaster prevention facilities. In case of frequency analysis of hydrometeorological data, it assumes that observation data have statistical stationarity, and a parametric method considering the parameter of probability distribution is applied. For a parametric method, it is necessary to sufficiently collect reliable data; however, snowfall observations are needed to compensate for insufficient data in Korea, because of reducing the number of days for snowfall observations and mean maximum daily snowfall depth due to climate change. In this study, we conducted the frequency analysis for snowfall using the Bootstrap method and SIR algorithm which are the resampling methods that can overcome the problems of insufficient data. For the 58 meteorological stations distributed evenly in Korea, the probability of snowfall depth was estimated by non-parametric frequency analysis using the maximum daily snowfall depth data. The results of frequency based snowfall depth show that most stations representing the rate of change were found to be consistent in both parametric and non-parametric frequency analysis. According to the results, observed data and Bootstrap method showed a difference of –19.2% to 3.9%, and the Bootstrap method and SIR(Sampling Importance Resampling) algorithm showed a difference of –7.7 to 137.8%. This study shows that the resampling methods can do the frequency analysis of the snowfall depth that has insufficient observed samples, which can be applied to interpretation of other natural disasters such as summer typhoons with seasonal characteristics.
1. 서 론
2. 적설량의 빈도해석 방법
3. 자료의 선정 및 확률적설량 산정
4. 표본 재추출 방법별 확률적설량 산정 결과
5. 결 론