웅성 모래쥐의 양경동맥을 7분간 폐쇄하여(OBC7) 뇌의 허혈을 유발하여, 해마의 microdialysate내 polyamine 함량과 조직내 polyamine 생합성효소(ornithine decarboxylase: ODC와 S-adenosylmethionine decarboxylase: SAM-DC)의 활성도를 분석하고, 해마의 cresyl violet(CV) 염색과 glial fibrillary acidic protein(GFAP) 면역염색소견들을 관찰하여, 허혈성 해마의 신경손상과 polyamine대사의 연관성을 검토하였다. 1) OBC부하 후, 해마의 dialysate내 polyamine 변동에서, putrescine(PT)은 현저히 증가되었으나, spermidine과 spermine은 다소 감소되는 경향을 보였고, 이에 해마조직내 ODC활성의 현저한 상승과 SAM-DC활성도의 유의한 저학 동반되었다. 2) Difluoromethylornithine(DFMO)는 OBC에 의한 PT증가와 ODC활성도 상승을 유의하게 억제하였으나, methylglyoxal bis(guanylhydrazone)(MGBG)는 각각 다소 억제하는 경향을 보였다. 3) OBC부하 7일후에 관찰한 조직소견에서, 해마의 CA1 부위의 유의한 신경손상이 유도되었으나 CA3와 dentate gyrus 부위에는 미약한 손상만 보였으며, GFAP 양성반응도 CA1 부위에서만 유의한 증가를 보였다. 이같은 소견들은 DFMO에 의하여 크게 영향을 받지 않았으나 MGBG에 의하여 유의하게 억제되었다. 이상의 성적들은 해마 polyamine의 과도한 허혈성 증가가 허혈성 신경손상에 관여할 수 있으나, 한편으로 polyamine대사의 과도한 억제도 허혈성 신경손상을 악화시킬 수 있으며, 허혈성뇌손상에 대한 MGBG의 보호작용은 polyamine 대사보다는 다른 작용에 매개되는 것으로 사료된다.
Male Mongolian gerbils (60 ~ 80g) were given DL-difluoromethylornithine (DFMO; 250mg/kg, ip) and methylglyoxal bis(guanylhydrazone) (MGBG; 50 mg/k, ip), respectively, 1 h prior to transient (7 min) occlusion of bilateral common carotid arteries (OBC7) and a daily dose of one of them for 6 days after recirculation, and the polyamine contents, activities of ornithine and S-adenosylmethionine decarboxylases (ODC and SAM-DC), and light microscopic findings of the hippocampus were evaluated. The hippocampal putrescine (PT) levels of the control gerbils treated with saline (STGr), markedly increased after OBC7, showing a peak level at 24 h after recirculation. The peak PT level was reduced in DFMO treated gerbils (DTCr) and in MGBG treated gerbils (MTGr). And 7 days after recirculation, the PT level of DTGr was decreased to about 75% of the PT level in the sham operated group (nonTGr) and to about 55% of the STGr level, respectively. The hippocampal spermidine (SD) level of STGr tended to decline, showing the lowest value at 8 h after recirculation. But the spermidine (SD) level of DTGr was somewhat higher at 8 h after OBC7 than those of STGr and MTGr The hippocampal spermine (SM) levels of all the experimental groups were little changed for 7 days after OBC. OBC7 markedly increased the hippocampal ODC activity. reaching a maximum (about 3 times higher than preischemic level) at 8 h and rapidly recovered to the control value by 24 h in STGr gerbils, and the OBC7-induced increase of ODC activity was significantly attenuated by DFMO or MGBG treatment. Whereas OBC7 induced a rapid decrease of the hippocampal SAMDC activity follwed by gradual recovery to the preischemic level, and the decrease of the SAMDC activity was slightly attenuated by DFMO or MGBG treatment. 7 Days after OBC7 the histological finding of the hippocampal complex stained with cresyl violet showed an extensive delayed neuronal damage in the CA1 region and to a lesser extent, in the dentate gyrus, sparing the CA3 region. And the neuronal death was aggevated by DFMO but significantly attenuated by MGBG. The immunochemical reactivity of hippocampus to anti-GFAP antibody was significantly increased in the CA1 region and to a lesser extent, in the dentate gyrus 7 days after OBC7, but was little changed in the CA3. And the increase of the anti-GFAP immunoreactivity was moderately enhanced by DFMO and significantly suppressed by MGBG. These results suggest that the polyamine metabolism may play a modulatory role in the ischemic brain damage.
(0)
(0)