The purpose of this study is to locate the proper position of the lower occlusal plane according to individual skeletal pattern. Cephalometric films of 234 subjects of the control group, 358 of the pretreatment group and 358 of the treated group were analyzed to study proper relationships between vertical dimension ratio(VDR) and lower occlusomandibular plane angle(LOM). The control group was divided into two subgroups by the age. The first subgroup consisted of 113 subjects of the age 14 year and under and with the mean age of 10.82 years. The other subgroup consisted of 113 subjects of the age 18 years and above with the mean age of 23.76 years. The preteatment group was divided into three subgroups by the age. The first subgtoup consisted of 274 subjects of the age 14years and under with the mean age of 11.36 years. The second subgroup consisted of 54 subjects of the age 14 through 18 years with the mean age of 15.4 years. The last subgroup consisted of 30 subjects of the age 18 years and above with the mean age of 21.35 years. The treated group was also divided into three subgroups by the age. The first subgroup consisted of 145 subjects of the age 14 years and under with the mean age of 12.91 years. The second subgroup consisted of 166 subjects of the age 14 through 18 years with the mean ahe of 15.64 years. The last subgroup condidter of 47 subjects of the age 18 years and above with the mean age of 21.61 years. Cephalometric films of the sample were traced. Measurements were made to a hundredth using a program specifically prepared for this study, and the results were entered into a 486DX PC. Means and standard deviations of all the veriables were calculated for each group. Correlation coefficients between pertinect varables were calculated. Significance tests on those coefficients, one-way ANOVA and t-tests between variables or groups were performed. On the basis of the results studied above, certain subjects were selected from the control and the treated groups to locate the proper position of the occlusal plane, and designated as the optimal occluaion group. The subjects of this optimal occlusion group had 1-3 mm overbite, 1-3 mm of overjet and less than 1.75 mm of curve of Spee. A total subjects of 187 in this group consisted 104 treated subjects and 83 control group. Regression analysis was carride out between VDR and LOM and regression equations were tabulated for this optimal occlusion group. The results were as follows : 1. Highly significant correlations were observed between various variables useful for identifying vertical component of skeletal frame, but any one particular variable did not accurately indicate the magnitude of anterior vertival overbite. 2. Of the variables useful identifuing vertical component of skeletal frame, The VDR showed the highest correlation to the LOM. 3. Of the total sample, 80 percent had ovebite within the nomal range, irrespective of VDR. 4. The optimal occlusion group was divided into 9 subgroups by the age and the anteroposterior skeletal pattern, and correlation coefficient and determination coefficient between VDR and LOM of each group were calculated. Correlation coefficiects and determination coefficients were found to be significantly hight in all groups. 5. Regression equation was induced for each of the optimal occlusion group to find proper LOM according to the VDR. 6. It was found that the mean value of the cant of occlusal plane itself is not enough for a diagnosis and a treatment plan. Rather, It is very important to locate the proper occlusal plane for an Individual skeletal pattern.