
Manufacture and Physicochemical Properties of Chitosan Oligosaccharide/A2 β-Casein Nano- Delivery System Entrapped with Resveratrol
- 한국축산식품학회
- Food Science of Animal Resources
- Food Science of Animal Resources 제39권 제5호
- : SCOPUS, SCIE, KCI등재
- 2019.10
- 831 - 843 (13 pages)
The purposes of this research were to form chitosan oligosaccharide (CSO)/A2 β-casein nano-delivery systems (NDSs) and to investigate the effects of production variables, such as CSO concentration levels (0.1%, 0.2%, and 0.3%, w/v) and manufacturing temperature (5℃, 20℃, and 35℃), on the production and physicochemical characteristics of CSO/A2 β-casein NDSs to carry resveratrol. The morphological characteristics of CSO/A2 β-casein NDSs were assessed by the use of transmission electron microscopy (TEM) and particle size analyzer. High-performance liquid chromatography (HPLC) was applied to determine the entrapment efficiency (EE) of resveratrol. In the TEM images, globular-shaped particles with a diameter from 126 to 266 nm were examined implying that NDSs was successfully formed. As CSO concentration level was increased, the size and zeta-potential values of NDSs were significantly (p<0.05) increased. An increase in manufacturing temperature from 5℃ to 35℃ resulted in a significant (p<0.05) increase in the size and polydispersity index of NDSs. Over 85% of resveratrol was favorably entrapped in CSO/A2 β-casein NDSs. The entrapment efficiency (EE) of resveratrol was significantly (p<0.05) enhanced with an increase in manufacturing temperature while CSO concentration level did not significantly affect EE of resveratrol. There were no significant (p<0.05) changes observed in the size and polydispersity index of NDSs during heat treatments and storage in model milk and yogurt indicating that CSO/A2 β-casein NDSs exhibited excellent physical stability. In conclusion, the CSO concentration level and manufacturing temperature were the crucial determinants affecting the physicochemical characteristics of CSO/A2 β-casein NDSs containing resveratrol.
Introduction
Materials and Methods
Results and Discussion
Conclusions